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1 Introduction 
 

Soil erosion models differ in their parameterisation and process simulation depending on the scale 

they were developed for. Often simplified assumptions are made to describe the complex soil 

erosion and sediment transport processes. It is thus important to use the right model at the right 

scale and feed it with appropriate data for the intended modelling scenario. Further, datasets needed 

for calibration and validation of the model outcomes are crucial for the validity of the results and 

their potential impact on the implementation of targeted mitigation measures.  

Thus, the aim of this deliverable is to compile a catalogue that assists model users to select suitable 

datasets appropriate for their respective modelling approach and intended spatio-temporal scale.   

When gathering needed data sets for a modelling scenario, it is firstly important to identify the 

problem and define the scope of the modelled scenario and the processes within. It is fundamental 

whether the scenario is focused on erosion hotspot identification, connectivity issues or the 

implementation of mitigation measures as these different scenarios may require different data sets. 

Model selection depends on both the modelling scenario, but can also be influenced by the data 

availability within the study area. Throughout the modelling, it is also important to recognise that 

all data sets have some inherent uncertainties and that data quality affects the outcome and 

interpretation of the model results. Furthermore, data is needed for calibration and validation of the 

model as well.  

The choice of data set and which data are needed also very much depends on the scale of modelling 

and its purpose.   

The application of soil erosion models at a very local scale such as field scale rather serves the 

investigation into detailed erosion and deposition processes. For example, sheet, rill and gully 

erosion can be distinguished and modelled individually. Changes in these erosion processes can be 

simulated for single rainfall events at high spatial resolutions. Spatial variability in land cover 

(vegetation density, stones) and connectivity elements such as tracks or ditches can be incorporated. 

Field scale modelling can further assist local planning purposes such as the design and effect of 

implementation of specific mitigation measures, e.g. against “design storms” with a certain 

occurrence. The model application should thus be adapted to the individual study area and locally 

measured data of high resolution is necessary.  

Catchment scale modelling efforts are often applied for soil erosion management scenarios, to aid 

land use planning and assess erosion/deposition risk throughout the catchment area over continuous 

time scales. Runoff and sediment transport throughout the catchment can be modelled, introducing 

a greater need to include data on possible connectivity elements. Depending on the applied spatial 

resolution of the study area and input data, catchment scale modelling may allow for inclusion of 

the diversity of the landscape while still representing it explicitly (small-scale catchment). In larger 

catchments, only larger features may be explicitly modelled (others may be applied as factors 

affecting erosion) and erosion processes and spatial variability in land cover may be averaged. For 

soil-related model parameters, the use of pedotransfer functions (PTFs) or literature might become 

necessary, due to unavailability of specific maps for many model parameter values. 

At regional/national scale erosion processes are averaged into homogenous spatial units such as 

grid cells or hydrologic units. The total soil detachment and sediment transport can then be 

expressed for each of these units within the study area. Often field parcels are used as the final units 
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in risk assessment maps to show the average pattern of erosion risk as well as erosion hotspots, and 

where mitigation measures could be implemented. The assessment is often performed for long-term 

time scales. Mitigation measures and connectivity elements at this scale will likely be represented 

as e.g. a percentage of the surface area that increase or reduce erosion and sediment transport, 

instead of explicit features due to a too coarse resolution. At regional/national scale comparability 

of model results becomes particularly important in the context of policy-relevant erosion risk maps 

such as those supporting joint policies like the CAP. In these scenarios, harmonisation of data sets 

could be valuable to achieve a fair implementation of mitigation measures domestically (Plambeck, 

2020; Schmaltz et al., 2024).  

Here we present an overview of criteria to consider and possible datasets for each of these scales 

and for certain soil erosion models and their model parameters. 

2 Dataset catalogue 
 

Table 1 presents possible datasets for each of the input parameter categories rainfall, soil, 

topography, land cover and management and conservation practices, which most models require. 

Each of the RUSLE factors, which also cover these mentioned parameters, are also stated. On EU-

level a lot of data has been collected which is openly accessible. For example, European-wide data 

have been published by the European Commission’s Joint Research Centre (JRC) for the model 

RUSLE. As the datasets used for the EU-wide RUSLE factor calculations are often based on data 

collected in each EU-country, these datasets may also be relevant at regional/national level and are 

given as examples in Table 1. However, the application for the chosen research area should be 

investigated, as some controversy towards their validity in specific regions has been discussed 

(Auerswald et al., 2015). Regional/national data are often available within each country in their 

national INSPIRE database. However, many regional/national datasets may exist but they might 

not all be freely accessible and may have to be collected from several different sources. Field scale 

data is often collected through direct measurements within the study area. A mix of these different 

data sources are often used for catchment studies, depending on the catchment size and aim of the 

model application. Field or catchment scale measurement data are likely harder to obtain, as these 

data often lie in the hands of specific institutions and may not be publicly accessible. 

 

In Table 2, data needed for (process-based) model-specific parameters are stated. These data can 

usually still be acquired without model calibration. The included process-based models build on 

the work in work package 4 of the SCALE project, so includes examples of relevant parameters, 

but it is not an exhaustive list.  

 

Data for more advanced and experimental parameters e.g. those parameters that users have to 

parameterise themselves have been included in Table 3. These data are usually only obtainable by 

model calibration, and measurements of the model outputs are typically needed. 

 

While the first two categories of input data are usually easy to obtain and make the model also 

applicable for a wider public, like practitioners or landowners, the third category can be limited to 

dedicated research or model development activities. An aspirational goal of model development 

should be to move as many “advanced” parameters into the other categories.
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Table 1. Basic data that most models need (factors from the RUSLE model). 

Parameter Scale and datasets 

 Field Catchment Regional/National 

Rainfall  
(R-factor) 
 

Locally based rainfall data needed, e.g. rain 
gauge or disdrometer. High temporal 
resolution (1-5 min) needed if event-based 
calculations are foreseen for e.g. for erosion 
process studies or mitigation measure 
scenario modelling. 
The use of disdrometer data allows for 
direct kinetic energy estimation and the use 
of empirical kinetic energy-intensity 
relationships can be omitted.    
 
Temperature data may be needed to filter 
out days with snowfall from the rainfall 
erosivity calculations. 
 
Other climate data may be needed by more 
process-based models for plant-growth 
simulations (see Table 2).  

Rainfall data covering the extent of 
the catchment needed, e.g. 
several rain gauges in the area or 
spatially distributed R-factor for 
large catchments. High temporal 
resolution is preferable (5-10 min).  
 

Long-term rainfall data (normally >20 years) needed to 
calculate a spatially distributed R-factor. Calculated based on 
rain gauge data with different kinds of interpolation methods 
(e.g. Hanel et al., 2016; Johannsen et al., 2022; Meusburger et 
al., 2012) or radar data (Auerswald et al., 2019). High temporal 
resolution is still preferable. 
 
Examples of using a single value as representative for a large 
regional area exist e.g. in Flanders, Belgium (Swerts et 
al.,2019). Other studies (e.g. Räsänen et al., 2023) use the 
spatially distributed R-factor calculated on European-wide 
basis for their country. 
 
 
Possible datasets:  
European-wide R-factor based on REDES database with rain 
gauge stations from the EU countries (Panagos et al., 2015a).  

Soil data - 
particle size 
distribution, 
org. mat. 
content, soil 
structure, 
permeability, 
aggregate 
stability 
(K-factor) 

Soil data from sampling at the site is highly 
relevant. Very high spatial resolution can be 
reached with the following techniques: 
LiDAR, photogrammetry, gamma-ray 
spectroscopy. 
 
Temporal variability of soil erodibility might 
be considered at this scale. 

Soil sampling data interpolated 
between sampling sites or soil 
maps, geostatistical interpolation 
methods, or pedotransfer 
functions can be considered. 

Often soil erodibility (K-factor) maps or values based on soil 
types or texture classes may exist (e.g. based on soil maps). 
Satellite data can be used for digital soil mapping. 
 
K-factor is often considered temporally static at this resolution. 
 
Possible datasets:  
EU-wide LUCAS topsoil dataset also used for the K-factor 
estimations for the whole of EU (Panagos et al., 2014). 
European Soil Database 
SoilGrids 



Deliverable WP3-D3 Catalogue on data sets to be used on different scales and models 

   

 
This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under grant agreement N° 862695 7 

Topography - 
Digital 
elevation 
data, slope 
orientation, 
slope length, 
slope 
steepness 
(LS-factor) 
 
 

DEM should be high resolution to be able to 
model the small-scale processes.  
 
Can be achieved via LiDAR, local UAV laser 
scanning and photogrammetry, which are 
high-resolution spatial and temporally 
distributed input data. Resolutions < 1 cm 
are possible, but not necessarily feasible. 
 
 

DEM based on LiDAR data, 
Airborne laser scanning (ALS) or 
photogrammetry. 
Temporal distribution is often 
limited. 
 
 

High resolution DEMs often exist nationally. Important to 
consider the correct resolution for the applied modelling 
scenario, as the DEM resolution can affect the soil erosion 
estimation. 
 
Regional or national ALS campaigns resulting in DEMs with 1-
10 m resolution. 
 
Temporal resolution even more limited. Regional or national-
scale LiDAR campaigns might be decades apart or a singular 
occurrence. Satellite data with much coarser resolution (ASTER 
GDEM, SRTM, EU-DEM (>30m)) might be available but are 
likely insufficient for typical agricultural conditions in Europe, 
especially when considering connectivity elements. 
Similarly, digitized topographical maps can be used for lack of 
better data. 
 
Possible datasets:  
EU-wide LS-factor in 25 or 100 m resolution (Panagos et al., 
2015b). 

Land cover 
and 
management 
(C-factor) 

Detailed management information 
(machinery, tillage depth, crop residues, 
fertilization, actual crop development, 
yields); plant growth model 

Land Parcel Identification System 
(LPIS) data contains georeferenced 
agricultural field blocks (polygons) 
identified and digitized from 
mainly ortho-imagery, which are 
potentially eligible for EU aid 
application. 
Sentinel data (several 
relationships approaches) 
NDVI-based. 

Literature C-factor values can simply be attributed to land use 
maps without further land sub-classification. 
Satellite data for canopy and residue surface cover, and 
vegetation-based indices for spatiotemporally described land 
use classifications in remote sensing approaches. 
 
Possible datasets:  
CORINE land cover - a pan-European inventory with 44 
thematic classes for specific reference years (latest 2018). 
 
European C-factor Dataset at 100 m resolution for arable and 
non-arable land with account of certain management practices 
for the reference year 2010 (Panagos et al., 2015c). 
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Conservation 
practices 
(P-factor) 

Detailed management information and 
details of how potential conservation 
practices affect erosion processes e.g. 
observed effectiveness from field studies. 
Within RUSLE, P values obtained 
from experimental data supplemented by 
analytical experiments are listed. However, 
the effectiveness may vary greatly, and it is 
recommended to adapt P-values for specific 
field conditions.  

Implicit representations (just 
adding new reference value to 
represent a conservation practice, 
assuming homogeneous 
behaviour) or explicit 
representation with actual spatial 
heterogeneity preserved – each 
method requires different input 
data. 

Inventories of support practices may exist in the national 
records of aid being paid for implementation of agri-
environmental schemes (IACS).  
Literature values on the effect of support practices from 
experimental studies.  
 
Possible datasets:  
Support practices factor (P-factor) at European scale in 1 km 
resolution for reference years 2010 and 2016 (Panagos et al., 
2015d). Partly based on the LUCAS dataset of stone walls and 
grass margins. 
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Table 2. Model-specific parameters/input data. Literature references either indicate the mentioned dataset or method directly, or are exemplary applications in 
case studies. Parameters indicated by an asterisk (*) are shared by more than 2 models. 

Parameter Scale and datasets Model 

 Field Catchment Regional/National  

Tillage direction Visual field inspection shows the 
tillage direction and seems 
superior to any data-driven 
method for a small number of 
fields 
 

Visual inspection of 
orthophotos or high-
resolution satellite imagery 
seem practical at small 
catchment scales; if not 
possible, the methods for 
regional/national scale can 
be applied 

For large spatial scales, tillage direction can be 
estimated from field geometry (typically the 
direction of the longer side), but also by object-
based extraction from satellite imagery (Lima 
et al., 2021) (Scholand and Schmalz, 2021). 
 
Actual datasets for this parameter seem 
lacking, but the methods mentioned need to be 
applied to the study area. 

WaTEM/SEDEM 

Bulk density, 

Soil organic matter content 

Soil sampling and soil physical 
laboratory methods 

Application of literature 
values or PTFs to soil maps 

EUPTF, EUHYDI, Rosetta, LUCAS-based maps  
SoilGrids1km, SoilGrids250m, SoilGrids 2.0: 
(Hengl et al., 2014) (Hengl et al., 2017) (Poggio 
et al., 2021) 
3D Soil Hydraulic Database of Europe (EU-
SoilHydroGrids, 250m and 1km): (Tóth et al., 
2017) 
EU-wide map (1km) based on LUCAS, BioSoil 
and CZO: (Aksoy et al., 2016) 

EROSION-3D, 
CASE 

Initial soil moisture 
content* 

Parameter is highly dependent on 
the scenario considered; actual soil 
moisture before onset of an 
erosive event will usually need soil 
sampling or installed sensors (TDR, 
capacitive, tensiometers, ..) 
Ground penetrating radar: (Lu et 
al., 2023); 

Satellite based estimation 
of topsoil WC 
(Sentinel1,2,3, radar and 
microwave missions); 
difficult to achieve 
temporal coverage; index 
of antecedent 
precipitation; 
Installed or portable 
cosmic-ray neutron 

Can be assumed as relative degree of 
saturation – different scenarios (wet, dry) 
might need to be considered; index of 
antecedent precipitation: (Zhao et al., 2011) 
Soil water index (1km for Europe): (Bauer-
Marschallinger et al., 2018), (Bauer-
Marschallinger et al., 2019) 
EEA Daily Soil moisture of Europe (simulation, 
5km) 

EROSION-3D, 
CASE, MHYDAS, 
OpenLISEM 
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In any case, dedicated measuring 
activities are necessary and timing 
is important 

sensors: (Heistermann et 
al., 2023); crop growth 
modelling 

Regional or national predictive models (mostly 
drought-focused), e.g., Drought Monitor 
Germany:  (Samaniego et al., 2013) 
 
COSMOS-Europe - cosmic-ray neutron sensor 
network: (Bogena et al., 2022) 

Surface roughness* 
(Manning’s n)  

Can be measured with high-
resolution LiDAR or 
photogrammetry; temporal 
variation might have to be 
considered at this spatial scale 

Assign values according to 
land use classification 
based on open channel 
flow literature 

Based on literature values; temporal variation 
during cropping season difficult to consider; 
Extraction from SWOT data: (Emery et al., 
2021) 
Based on SAR data: (Sadeh et al., 2018) 
Based on Landsat, ALOS, PRISM imagery: 
(Hossain et al., 2009) 

EROSION-3D,  
IBER, CASE, 
SHETRAN 

Aggregate stability for 
splash erosion  

 

Soil physical laboratory analysis, 
Estimation from PTF or literature 
values based on detailed soil data: 
(Clergue et al., 2023) 

Estimation from PTF or 
literature values, based on 
soil maps 

Estimation from PTF or literature values, based 
on coarse soil data from soil maps with national 
or larger coverage 

MHYDAS, 
OpenLISEM 

d50, d90 soil particle 
diameters 

EROSION-3D: PSD with 9 
texture classes according 
to German soil survey 
guide KA4 

Soil physical laboratory analysis, 
sieve and sedimentation; laser 
diffraction; gamma-ray 
spectroscopy; any method suitable 
to obtain particle size distribution 

Estimation from PTF or 
literature values, based on 
soil maps 

Estimation from PTF or literature values, based 
on coarse soil data from soil maps with national 
or larger coverage 

OpenLISEM, 
EROSION-3D 

Critical shear stress (Pa) * 

CASE: Cohesion COH 

Also used as inverse 
function of soil cohesion  

 

Laboratory flume experiments; 
field measurement with shear vane 
tester, penetrometer and similar 
devices: (Zimbone et al., 1996) 

Estimation from PTF or 
literature values; 
openLISEM: (Schlesner et 
al., 2023) 

Estimation from PTF or literature values, based 
on coarse soil data from soil maps with national 
or larger coverage 

MHYDAS, CASE, 
OpenLISEM, 
EROSION-3D, 
WEPP 

Rill erodibility (s m-1)  

 

Laboratory flume experiments Estimation from PTF or 
literature values; US case 
study: (Lee et al., 2022) 

Default values from WEPP MHYDAS, WEPP 
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Number of rills, width, 
spacing, type of rills 
 

Default values from WEPP; field 
inspection and survey; UAV flights: 
(Malinowski et al., 2023) 

- - MHYDAS, WEPP 

Density of vegetation in 
vegetated filter 
 

Runoff experiments, field 
inspection (point frame, cover 
board); photographic and ALS 
methods: (Straatsma and 
Middelkoop, 2006) ; literature 
values 

- - MHYDAS 

Infrastructure: Buildings, 
Roads and Bridges or 
culverts 
 
Flooding barrier height 

Can be captured directly  
(buildings, roads) or included by 
appropriate DEM manipulation 
(burning, breaching, shifting) 

Sufficiently high spatial 
resolution of DEM or land 
use map needed 

- OpenLISEM 

Vegetation height Can be estimated by means of 
LiDAR, result of difference 
between DSM and DEM 

Can also be estimated 
based on land-use 
information (permanent 
crops, forest, development 
stages of annual crops,..) 

Vegetation height model NFI (Switzerland): 
(Ginzler, 2021) 
Global canopy height model: (Lang et al., 2023) 
Both datasets likely not suited for annual crops 

OpenLISEM 

LAI (Leaf Area Index)* 
 
SHETRAN: Vegetation 
cover indices  
 
CASE: Canopy cover CC 

Hand-held LAI-meter; 
hemispherical photography; 
absorption of photosynthetically 
active radiation (PAR) above and 
below canopy; destructive leaf 
sampling 
(Fang et al., 2019) 

Products from Copernicus 
Global Land Service – LAI, 
FCOVER (300m, 1km): 
(Fuster et al., 2020); 
Calculation from remote 
sensing data (NDVI-based 
relationships): (Bajocco et 
al., 2022); modelling of 
plant development 

Calculation from remote-Sensing data; 
modelling of plant development; literature 
values specific for plant and developmental 
stages 

OpenLISEM, 
SHETRAN, CASE 

Drainage parameters (van 
Genuchten): alpha, n, 
specific storage, porosity 

Soil sampling and soil physical 
laboratory methods  

- 3D Soil Hydraulic Database of Europe (EU-
SoilHydroGrids, 250m and 1km): (Tóth et al., 
2017) 
 

SHETRAN 
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GSHP - Global Soil Hydraulic Properties dataset 
(250m)  

Ratio actual/potential 
evapotranspiration 

Actual evapotranspiration 
measurements (Lysimeter, Eddy 
covariance, Scintillometer) or 
calculations (crop coefficients, 
Budyko method) 

Crop growth models NASA global ET (8km resolution): (Zhang et al., 
2015) 
MODIS Evapotranspiration (1km resolution): 
(He et al., 2019) 
METRIC model from Landsat imagery (30 m): 
(Suwanlertcharoen et al., 2023)  
European Dataset (1 km²): (Nistor et al., 2022) 
Global ETa product (1 km²): (Elnashar et al., 
2021) 
 

SHETRAN 

Climate information: 
Temperatures, solar 
radiation, wind velocities 

Highly dependent on scenario – 
historical or prediction; typically 
complete weather station installed 
at site 

Geostatistical interpolation 
from close weather station 

ECMWF ERA5 (31 km): (Hersbach et al., 2023) 
Various historical reanalysis data from climate 
models: (Abbaspour et al., 2019) 

WEPP 

Baseline interrill erodibility 
(Ki) – reflects susceptibility 
to detachment by both 
rainfall and shallow flows 

Calculation from Clay and very fine 
sand fractions – built in PTFs 

- - WEPP 

Rill erodibility (Kr) Calculation from organic material, 
clay and very fine sand fractions – 
built in PTFs 

- - WEPP, MHYDAS 

Ground cover GC: 
considers soil shielded by 
living or dead plant matter 
on the soil surface 

Optical  literature values, crop 
growth modelling 

 CASE, 

Saturated hydraulic 
conductivity Ksat* 
 
SHETRAN: horizontal, 
vertical, relative Ksat 
 

Spatially highly variable, feasibility 
of measurements at field scale and 
finer can be doubted (Picciafuoco 
et al., 2019); estimation based on 
PTF might be more feasible even at 
small spatial scales; 

Prediction via PTF from soil 
maps  
 
EU-HYDI: (Tóth et al., 2015) 
(Szabó et al., 2021) 

Prediction via PTF from large-scale soil maps  
 
SoilGrids1km, SoilGrids250m, SoilGrids 2.0: 
(Hengl et al., 2014) (Hengl et al., 2017) (Poggio 
et al., 2021) 

CASE, MHYDAS, 
SHETRAN, WEPP 
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WEPP: Green and Ampt 
effective conductivity 
parameter Ke 

Ke: function of saturated hydraulic 
conductivity; Calculation from 
cation exchange capacity, clay and 
sand fractions – built in PTFs in 
WEPP 

3D Soil Hydraulic Database of Europe (EU-
SoilHydroGrids, 250m and 1km): (Tóth et al., 
2017) 
 
SoilKsatDB: (Gupta et al., 2021) 
GSHP - Global Soil Hydraulic Properties dataset 
(250m): (Gupta et al., 2022) 
(mostly only vertical!) 
 
 

Rainfall intensity and 
duration  
Cf. considerations for 
RUSLE R-factor 

Typically only available at 
sufficiently high temporal 
resolution (< 1hr) at existing 
measurement sites (ombrograph, 
disdrometer); in other locations: 
weather radar data: (Kreklow et al., 
2020) Spatially highly variable. 
Defining design events for scenario 
analysis can be necessary  

 European scale (Matthews et al., 2022) 
EMO-5 (5km, 6hr) 
UERRA M-S (5.5km, 24hr) 
E-OBS (11km, 24hr) 
Weather radar typically has large spatial 
footprint 

CASE, EROSION-
3D 
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Table 3. Advanced/experimental parameters/input data. 

Parameter Scale and datasets Model 

 Field Catchment Regional/National  

CF: factor for runoff 
concentration, considers the 
degree of runoff 
concentration sub cell-size; 
leads to higher shear stress 
and transport capacity than 
possible with the chosen 
spatial resolution 

Can be calibrated with 
measurements for runoff 
and sediment masses 
available 

Not advised, 
calibration likely 
difficult or impossible 

Not advised, calibration likely difficult or 
impossible 

CASE 

Transport capacity 
coefficients (kTC) for 
different types of landuse  
 
Parcel trapping efficiency 
(PTEF) 

Default values are 
available.  
Need to be assessed by 
means of calibration. 
Supposedly, calibration 
gets more complex with 
higher spatial resolution 

Application of default 
values 
Catchment scale (CZ): 
(Winterová et al., 
2022) (Krasa et al., 
2019) 
 
 

Application of default values 
 
WaTEM/SEDEM calculations at EU scale: (Borrelli 
et al., 2018) or at national scale (CZ): regional scale 
(ESP): (Alatorre et al., 2010)  

WaTEM/SEDEM 

Maximal transport 
coefficient from interrill 
erosion 

Calibration needed; 
application of default 
values 

Application of default 
values 
 

Application of default values 
 

MHYDAS 

Boundary conditions, 
including rainfall intensity, in- 
and outlet hydrograph and 
sedigraph 
 
SHETRAN: stream-aquifer 
interaction 

Appropriate 
measurements 

Boundary conditions 
can be either set at 
specific locations, or 
spatially interpolated, 
e.g., from a network of 
rain gauges.  

While interpolation of rainfall intensities between 
stations on regional/national scale seems 
unproblematic, boundary conditions for hydro- 
and sedigraphs can be difficult to obtain. 
Sedigraphs are often not available with sufficiently 
high spatial and temporal coverage. Hydrographs 
are typically only known at river gauges. This 
presumably limits model application to catchment 
areas with measurement infrastructure in place. 

IBER, SHETRAN 
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3 Conclusions 
 

The erosion models investigated share many commonalities in their parametrization. Especially the 

RUSLE factors R, K, LS, C, P are engrained into the structure of most of the models. Because their 

use is so widespread, finding appropriate datasets for these parameters at different spatial scales is 

comparatively easy. 

Some model-specific parameters are shared between the models investigated, these include 

saturated hydraulic conductivity, initial soil water content, and soil stability with regard to rainfall 

or runoff detachment. Improving or creating the respective datasets seems beneficial to the wider 

erosion modelling community and not only the users of one specific model. 

Naturally, more process-based models tend to have higher demand for parameters that are more 

difficult to obtain. These are either model-specific but generally attainable by simple means (PTFs, 

literature values), or they have to be obtained by parameter calibration, using measurements for the 

model outputs. This mostly means two things: while the simpler models can be used without the 

need for calibration data, the more advanced ones need both measured data and specialist 

knowledge for application. 

According to the quality of the dataset in question, using default relationships such as literature 

values or PTFs might be more or less feasible than using the respective dataset (this behaviour is 

presumably highly model-specific and would need proper investigation by dedicated studies). The 

WEPP model seems to be well-equipped to work in data-scarce regions, with PTFs included for 

most parameters (although mostly based on US soils). As can be expected, the more 

physical/hydraulics-based models Erosion-3D, SHETRAN and IBER tend to need more advanced 

parameters that are hard to obtain at larger spatial scales. 

With parameter values depending on soil properties when using literature values or PTFs, the 

reliability of these values depends on the reliability of the soil dataset in use. There are typically 

national soil maps available in many countries (existing for taxation or pedological purposes). Apart 

from that, various regional, national or even global-scale datasets exist that can be used when 

lacking any more detailed information. High-resolution data is becoming increasingly available for 

a range of scales, thereby extending the possible modelling scales, however it is uncertain whether 

the models are equipped for such an up- and down-scaling (Epple et al., 2022). With recent 

advances in digital soil mapping applications, utilizing remote sensing data and machine learning 

models, the erosion modelling community can hope for improved availability and accuracy of these 

data. Dataset quality and its inherent uncertainties should be kept in mind throughout the modelling 

and when reporting its results.  
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